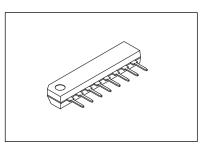
# LA3161




www.onsemi.com

## Monolithic Linear IC 2-Channel Preamplifier for Car Stereo



- On-chip 2 preamplifiers
- Good ripple rejection owing to on-chip voltage regulator
- Minimum number of external parts required
- Low noise
- 8-pin SIP package facilitating easy mounting
- Pin-compatible with LA3160



SIP8 22x4.5 / SIP8

#### **Specifications**

#### Absolute Maximum Ratings at Ta = 25°C

| Parameter                   | Symbol              | Conditions | Ratings     | Unit |
|-----------------------------|---------------------|------------|-------------|------|
| Maximum Supply Voltage      | V <sub>CC</sub> max |            | 18          | V    |
| Allowable Power Dissipation | Pd max              |            | 200         | mW   |
| Operating Temperature       | Topr                |            | -20 to +75  | °C   |
| Storage Temperature         | Tstg                |            | -40 to +125 | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### Recommended Operating Conditions at $Ta = 25^{\circ}C$

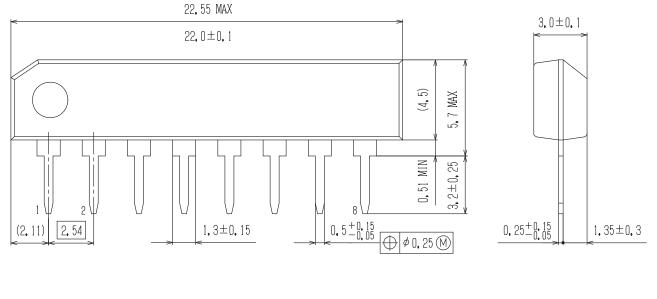
| Parameter       | Symbol          | Conditions | Ratings | Unit |
|-----------------|-----------------|------------|---------|------|
| Supply Voltage  | V <sub>CC</sub> |            | 9       | V    |
| Load Resistance | PL              |            | 10k     | Ω    |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

#### Electrical Characteristics at Ta = 25°C, $V_{CC}$ = 9V, $R_L$ = 10k $\Omega$ , $R_g$ = 600 $\Omega$ , f = 1kHz, NAB

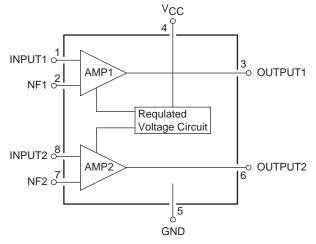
| Parameter                      | Sympol          | Conditions                        | Ratings |      |      | Unit |  |
|--------------------------------|-----------------|-----------------------------------|---------|------|------|------|--|
| Parameter                      | Symbol          | bol Conditions min                |         | typ  | max  | Unit |  |
| Current Dissipation            | Icc             |                                   |         | 6.5  | 8.0  | mA   |  |
| Voltage Gain                   | VG              | Closed loop                       |         | 35   |      | dB   |  |
| voltage Gain                   | vG              | Open loop, V <sub>O</sub> = 0.77V | 70      | 78   |      | dB   |  |
| Output Voltage                 | Vo              | THD = 1%                          | 1.0     | 1.3  |      | V    |  |
| Total Hamonic Distortion       | THD             | V <sub>O</sub> = 0.5V             |         | 0.05 | 0.30 | %    |  |
| Input Resistance               | ri              |                                   | 70k     | 100k |      | Ω    |  |
| Equivalent Input Noise Voltage | V <sub>NI</sub> | Rg = 2.2kΩ                        |         | 1.2  | 2.0  | μF   |  |
| Crosstalk                      | СТ              | $Rg = 2.2k\Omega$                 | -50     | -65  |      | dB   |  |
| Ripple Rejection               | Rr              |                                   |         | -40  |      | dB   |  |

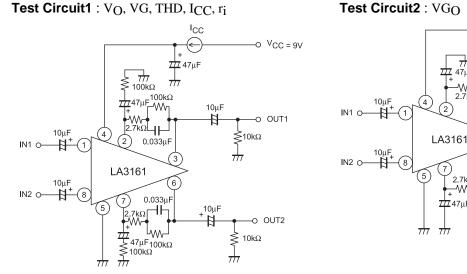
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


#### **ORDERING INFORMATION**

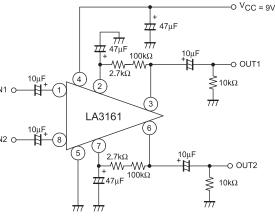
See detailed ordering and shipping information on page 7 of this data sheet.

### Package Dimensions

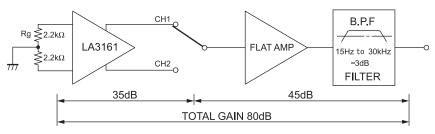

unit : mm


SIP8 22x4.5 / SIP8 CASE 127AG ISSUE O

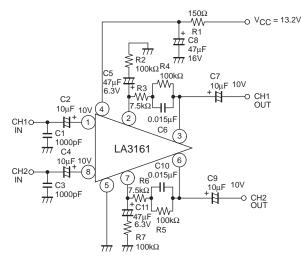


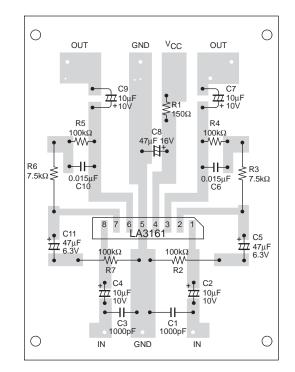



**Block Diagram** 






Test Circuit3 : Noise



#### Sample Application Circuit 1 : Preamplifier for Car Stereo





#### **Function of External Parts**

C<sub>2</sub>, C<sub>4</sub> are input coupling capacitors. In NAB equalizer amplifier, the gain at low frequencies is high and 1/f noise inside the IC is emphasized as output noise. Therefore, if the reactance of capacitor at low frequencies is increased, the dependence of 1/f noise on the signal source resistance causes the output noise voltage to deteriorate, and the value of reactance must be made small enough as compared with the signal source resistance. C<sub>2</sub>, C<sub>4</sub> also influence the operation start time and the adequate value of these capacitors is  $10\mu$ F. (Since C<sub>2</sub>, C<sub>4</sub> of less than 4.7 $\mu$ F make the operation start time longer, use C<sub>2</sub>, C<sub>4</sub>, of 4.7 $\mu$ F or more).

C5, C11 are NF capacitors. The lower cut-off frequency depends on the value of these capacitors.

If the lower cut-off frequency is taken as  $f_L$ :

C5 (C11) =  $1/2\pi \cdot f_L \cdot R2$  (R7)

If the value of this capacitor is made larger, the operation start time of amplifier is more delayed. The adequate value of capacitor is  $47\mu$ F.

The frequency characteristic of the equalizer amplifier depends on  $C_6$  and  $R_4$ ,  $R_3$  ( $C_{10}$  and  $R_5$ ,  $R_6$ ). The time constants to obtain the standard NAB characteristic are as shown below.

| Tape speed   | 9.5cm/s | 4.75cm/s |
|--------------|---------|----------|
| C6 (R3 + R4) | 3180µs  | 1590µs   |
| R3 C6        | 90µs    | 120µs    |

C8 is bias capacitor for the power line. C8 of  $47\mu$ F is inserted at a point as close to the power supply pin (pin 4) as possible.

 $C_1$ ,  $C_3$  are for preventing radio interference in the strong electric field, interference attributable to engine noise, and blocking oscillation at the time of large amplitude operation. The adequate value of  $C_1$ ,  $C_3$  is approximately 1000pF.  $C_7$ ,  $C_9$  are output coupling capacitors. The adequate value of  $C_7$ ,  $C_9$  is  $10\mu$ F.

#### NAB element and determination of gain

Since the DC feedback is provided by  $R_1$ ,  $R_2$  of NAB element, which brings about DC output potential at pins 3, 6, it is impossible to change the value of  $R_1$ ,  $R_2$  of NAB element greatly. Therefore, when determining the gain, change  $R_{NF}$  with  $R_1$ ,  $R_2$ ,  $C_1$  (NAB element) kept constant.

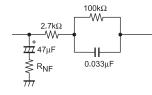
Pin 2 or Pin 8 
$$\xrightarrow{R2}_{TT}^{R1}_{TT}_{47\mu F}$$
  $\xrightarrow{R1}_{TT}_{TT}^{R1}_{47\mu F}$   $\xrightarrow{R1}_{TT}_{TT}^{R1}_{TT}$ 

(1) How to obtain R<sub>NF</sub>

Impedance Z of NAB element is

$$Z = \frac{1}{1/R1 + j\omega C1} + R2$$
  
= (R1 + R2)  $\left\{ \frac{1 + j\omega C1\{R1 R2/(R1 + R2)\}}{1 + j\omega C1R1} \right\}$ 

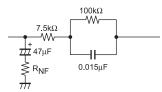
For a general negative feedback amplifier circuit,  $A = Ao/(1 + Ao\beta)$  applies, and  $Z = A \cdot R_{NF}$  is obtained under conditions of Ao>>A, A>>1 ( $\beta = R_{NF}/(R_{NF} + Z)$ , Ao = open-loop gain, A = feedback gain). Therefore, we can use an approximation of  $R_{NF} = Z/A$ .


 $A = (VG \text{ for } 1kHz) \text{ times}, (Set R_1, R_2 \text{ at approximately } 100k\Omega)$ 

Each time constant of NAB characteristic.

| Tape speed     | 9.5cm/s | 4.75cm/s |
|----------------|---------|----------|
| T1 C1, R1      | 3180µs  | 1590µs   |
| T2 C1 (R1//R2) | 90µs    | 120µs    |

#### (2) Examples of NAB Constants


(a) Tape speed : 9.5cm/s. (8 tracks)



| VG              | 30  | 35  | 40 | dB |
|-----------------|-----|-----|----|----|
| R <sub>NF</sub> | 180 | 100 | 56 | Ω  |

 $VG : R_{NF} (VG/f = 1kHz)$ 

#### (b) Tape speed : 4.75cm/s. (cassette)



VG : R<sub>NF</sub>

VG · RNE

| VG              | 30  | 35  | 40  | dB |
|-----------------|-----|-----|-----|----|
| R <sub>NF</sub> | 440 | 240 | 130 | Ω  |

(c) Flat amplifier



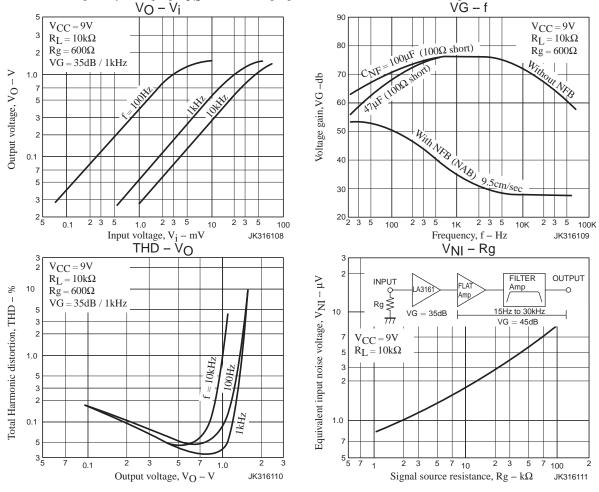
| VO . KN         | Г   |     |    |    |
|-----------------|-----|-----|----|----|
| VG              | 30  | 35  | 40 | dB |
| R <sub>NF</sub> | 3.2 | 1.8 | 1  | kΩ |

#### Proper cares in using IC

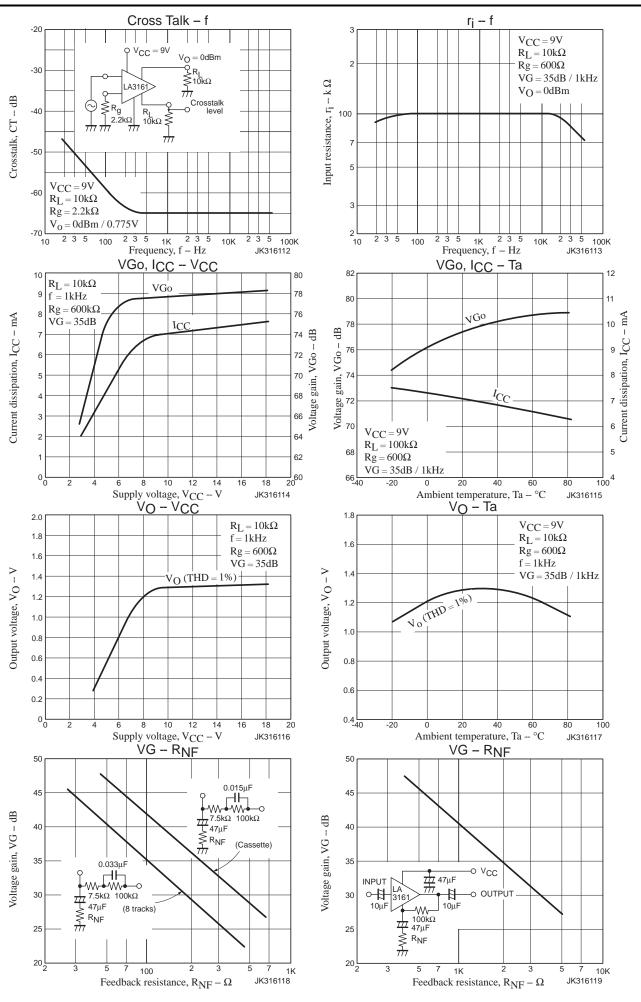
1. Maximum Rating

If the IC is used in the vicinity of the maximum rating, even a slight variation in conditions may cause the maximum rating to be exceeded, thereby leading to a breakdown. Allow an ample margin of variation for supply voltage, etc. and use the IC in the range where the maximum rating is not exceed.

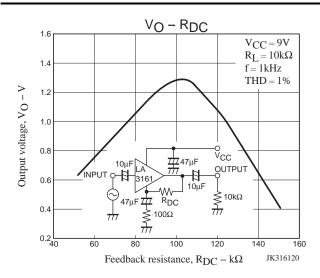
2. Short between pins


If the supply voltage is applied when the space between pins is shorted, a breakdown or deterioration may occur. When installing the IC on the board or applying the supply voltage, make sure that the space between pins is not shorted with solder, etc.

3. Breakdown of IC attributable to inverted insertion


If the IC is inserted inversely and operated, the IC may suffer from something unusual, thereby leading to a breakdown or deterioration of the IC. When installing the IC on the board or operating the IC, check the marked surface of IC.

#### Proper cares to be taken for obtaining optimum operation of IC


- Set DC resistance of  $R_1$ ,  $R_2$  of NAB element at approximately  $100k\Omega$ .
- Determine the gain by changing R<sub>NF</sub> without chaging NAB constant (Refer to Examples of NAB constant.).



www.onsemi.com 5



www.onsemi.com 6



#### **ORDERING INFORMATION**

| Device   | Package                         | Shipping (Qty / Packing) |
|----------|---------------------------------|--------------------------|
| LA3161-E | SIP8 22x4.5 / SIP8<br>(Pb-Free) | 25 / Fan-Fold            |

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the desi